
JOURNAL OF COMPUTATIONAL PHYSICS 34, 74-93 (1980) 

Numerical Solutions of Chemically Reacting Flows in Porous Media* 

K. C. Y. CHIN AND K. L. BRAUN 

Unkcrsify of California, Lawrence Lifxmtore Lal,orarory, Liixrtnore, Califorma 94550 

Received July 20, 1978 

We discuss the computational aspects of a porous flow past a reacting solid undergoing 
pyrolysis. We present govclning equations and develop an accurate numerical method for 
their solution. The algorithm accurately calculates the rapidly varying component and 
uses a fixed step size commensurate with the smoothly varying component of the solution. 
The resulting nonlinear equation is solved with Newton’s method; the linear system is 
solved using a discrete analog of the invariant-imbedding method for second-order, linear, 
two-point boundary-value problems. We also develop a criterion for truncating the com- 
putalioflal dorndin 10 IrlinimiK lhc calcillalioIlal enorl, and we preseul SOlllC lypicai cab 

culations showing that the scheme is accurate and efficient. 

Energy resource recovery processes such as oil shale retorting and coal gasification 

belong to the class of chemically reacting, porous-medium flow phenomena. lnherent 
in thcsc phcnomana arc problems that arise from the disparate time scales of the 
physical and chemical processes. We have developed a one-dimensional mathematical 
model [l] that simulates the chemico-physical processes involved in concurrent vertical 
retorting of rubblized oil shale. 

The processes are modeled by a set of stiff differential equations. (Such a system is 
considcrcd stiff on some interval if a component of the solution exists that rapidly 
varies within the interval. 123) 

Work continues on this model, which is intended to be a comprehensive retorting 
mode1 that includes all of the important chemico-physical processes. 

To illustrate the basic difficulties and the current techniques for solutioll, WC con- 
sider the numerical solution of a simplified retorting problem. In the simplified 
problem, part of the solid material (S) undergoes thermal decomposition at elevated 
temperatures or pryolysis to form a gaseous effluent (G,) and a solid residue (S,). 
The physical processes involved arc axial convective transport of energy and mahs from 
the bulk gas flow, the effective axial conductive transport of heat. and heat transfer 
between the gas stream and the solid. 

Solving the governing equations with our numerical method results in a nonlinear 
system of equations. The nonlinear equation is aolverl with Newton’s methoti and the 

* This work was performed under the auspices of the U.S. Department of Energy by Lawrence 
I.ivermore Laboratory under contract No. W-7405Fng-48. 
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linear system with a discrete analog of the invariant-imbedding method for second- 
order, linear, two-point boundary-value problems. This approach was inspired by a 
lecture of G. H. Meyer on using invariant-imbedding algorithms in free-boundary 
problems. 

GOVERNING EQUATIONS 

The governing equations for the simple retorting problem are: 

The energy equation for the solid: 

The solid species continuity equation: 

‘3s 
-gy= -kS. 

The energy equation for the gas: 

The gas species continuity equation: 

Here, T is the solid temperature, S is the reacting species, T, is the gas temperature, 
and G, is the gaseous reaction product. 

Augmenting the governing equation, we have the following subsidiary relations: 

G = Go + Gz , 
C = WA, 
h = h(T,), 
p = PO + s, 

G = csm9 
k = k(T) = Ae-EIT, 

where A and E are constants. Here, G is the superficial gas-flow rate, C is the specific 
heat of the gas, h is the heat-transfer coefficient, p is the density of the solid, C, is 
the specific heat of the solid, pO is the density of the nonreacting solid, and G, is the 
input superficial gas-flow rate. 



76 CHIN A9D BRAuN 

Initial conditions for the problem are 

S(z, 0) = S,(z) and qz, 0) = T,(z), O<z<L; 

boundary conditions are 

T<,(O, t) - & z&z. (0, t) = g(r), 
s (L, t) == 0, 

G&O, r) = 0, t > 0. 

We see from these equations that the gas-solid heat-transfer process constitutes 
one of the characteristic time scales of interest. At low temperatures, this is the domi- 
nant phenomenon. As temperature increases, pyrolysis occurs and the pyrolysis- 
reaction rate becomes comparable to the heat-transfer rate, surpassing it at higher 
temperatures. With large reaction rates, only a small amount of reactant remains. 
Because of the form of the reaction-rate expression, the decomposition occurs over a 
very narrow temperature range. The temperature variations (both solid and gaseous) 
are smoother than that of the solid species profile. Disparate scales of variation occur 
in the solution, creating a stiff system of partial differential equations in the sense 
Miranker [2] described. 

An obvious implication of the theory of numerical solutions for stiff, ordinary 
differential equations is that a stiffly stable algorithm with dynamic step-size control is 
required to integrate the equations if strict accuracy is to be maintained. Dynamic 
step-size control in space and time can be most difficult to implement. 

In this paper, we develop a scheme that uses a fixed step size commensurate with 
the smooth temperature variation and yet calculates accurately the rapidly varying 
species profile. In the next section, we develop a nonlinear discretization of Eq. (2) 
(in contrast to a linear multistep method) that relates accurately the rapidly varying 
species concentration to the smoother solid temperature change. In so doing, the stiff 
aspect of the problem is eliminated in that the reduced problem is concerned with 
calculating the smoothly varying gaseous and solid temperature profiles. 

In developing the nonlinear discretized analog of the species continuity equation, 
we take advantage of the form of the equation and of the interpolation property of the 
smoothly varying temperature profile. An error estimate is also derived. 

DISCRITTIZATION OF SPECIES CONTINUITY EQUATION 

To begin, consider the integration of the first-order rate equation 

2S 
- = --k(T) s 
2t (5) 
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for 
given S(t,-,) = P’. 

Formally, we have 

with k(T) = q AC-E/~. If T(t) is invertible, i.e., t =: f( r), then 

Suppose, 7(t) has a linear interpolation for t E I, , i.e., 

then the integral on the right may be evaluated via the exponential integral 

The solution of Eq. (5) is then 

S, :- S,-, exp{ -(tn - i, .J 1,(7”, P-I);‘4 T], 

where, for convenience, we have set 

I,( T”, Tel) z )““k(T”) _ T”. ‘k( T-1) -. /fQ&(E.’ j‘-“) - E,(E;7‘“-‘)!. 

(8) 

From the derivation, we see that the accuracy of the integration of Eq. (1) depends 
entirely upon the extent to which 7(t) may be approximated by a linear ftinction for 
1 E I,, . The error estimate is summarized as follows: 

THEOREM. Suppose T(t) has a linear interpolation fir t, < t < -tl such that 
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where 

Ti = T(ti), i z2 0, 1 > 

then for 

T; = Tytc), to < fc < 11 7 

r2T” E 
2+ AT H 1 -I- 

1 
t1 

- to 
k T(t) dt = ArT - IoV, , To) 11 + 3 (&) 

x 1 L [ ,( ‘I,& =’ ) [T,k(T,) - T&T,)] - ; (1 -j- T1 ; =’ ) 

x AE[G(E/=J - W=o)I]lI,(T, , To) -t W4)/, 

where 

E,(Z) =-: 1: eeT dt/t. 

The proof of the theorem mimics the error analysis for steepest descent methods. 
(See Olver [3].) Higher-order methods can be generated with a higher-order inter- 
polation for T(t), but the price paid is the computation of the incomplete gamma 
functions that result. 

An integration procedure of this type, Eq. (5), has been proposed by Dennis [4] 
for integrating ordinary differential equations possessing exponential-type solutions. 
We must also include the exponential fitting methods [2, 5, 61 in this category. The 
integral 

r 
+” 

k(T) dt 
- ‘VI-1 

is numerically troublesome because of the form of k(T). This recognition is new and 
contributes to the state of the art. For computational purposes, we use a rational 
approximation for the exponential integral E,(X), [7], i.e., 

xeZE,(x) = 
x2 i alx + a2 
x2 + b,x + b, “- 4x)9 

where 
a, = 2.334733, b, = 3.330657, 

a, = 0.250621, b, = 1.681534, 

and 

1 c(x)1 < 5 x 10-j for 1 ,( x < X. 
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The term I&P, P-l) may be rewritten as 

1 
T” _ T”-l {T”k(T”) &(E/T~) - Tn-lk(T”-l) l&!ip-“-1)), 

where 

m-4 
0.995924x + 1.430913 

x2 + 3.33065x + 1.681534 - 

This formula will be used for later discussion. 

%RMULATION OF TIIEDIFFERENCESCHEMEANDTHECOMPUTATIONALALGO 

Difference Scheme 

Our basic difference scheme is the trapezoidal rule, which is formally second- 
order accurate. Keller [S] has adopted variants of the trapezoidal rub to stu 
parabolic equations with great success. The derivation of the difference equation in 
this section closely follows Keller’s method. 

Consider a partitioning of the domain D = (z, t j 0 < z < L, 0 < t) sucks k&t 

with 

Let 

(D,-p)(z) = 7-;yC” - q-1>, 

rp112(Z) = l/2(@ + (bn-1). 

Applying the trapezoidal rule to Eq. (l), we obtain 

By definition, 

f”-“(z) = !j (CspsT)n-l 

Equation (10) becomes 

- ~,n(~) = (Pscs)+V T” - ; (Cc&” Tn-l - h,s” - 2 h”(a$ 
0 

II = 1, 2,... and O<z<L 

- 
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Adjoining Eq. (IO), we have 

P(z) = Sri-1(z) exp[-T&(2+“, P-l)/LiT], n = 1, 2,...; 

Ps” = psw; 

Cs” = Cs(T”); 
w 

h” = h(Tg”). 

In principle, Eqs. (11) and (12) may be solved for P(z) in terms of T,n(z), i.e., 

T"(z) = Tn(Tg*; T"-=, T;-l, Sn-l). (13) 

After substituting the relation of Eq. (13) into Eq. (3), we have reduced the original 
problem to solving a nonlinear, two-point boundary problem for T,“(z). This observa- 
tion is germane to the development of the computational algorithm to be discussed. 

We will now turn to the discretization of Eq. (3). As in Keller, we employ the nota- 
tion 

9%” = C(Zi , GJ, 

The trapezoidal rule will be applied to the integration of Eq. (3), which is written as a 
system of first-order, partial-differential equations, i.e., 

(k,) T = P”, 

aPn 
__ z (CG)” T 

az 
+ $(T,' - Tn), 

(14) 

to yield 

G = c%l,Z a-(T,)jn - fT,z = 0, j = 1, 2,..., N 

F$ = L&-P," - (CG)&,, Dz-(Tg): - 2 [h(T, - T)],"ll,2 = 0, 
(15) 

j = 1) 2,. . . ) N. 

Similarly, we obtain the following discrete analog of Eq. (4): 

Gij appears in Eq. (15) through 
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The initial and boundary conditions are 

7;’ = T()(Zj), j = 0, 1, 2 )‘..) IV. 

(16) 

Ps” 0, li = 1, 2,... 

The initial values {I;“.j) are obtained by solving Eq. (14). The boundary values {Ti:.,P: 
are computed simultaneously by combining Eq. (11) evaluated al z -7 0 to the interior 
set of diff‘erence equations. Thus, at a given time level l,L , we have a system of 4:‘V .i,- 3 
equations [Eqs. (1 I), (12), and (1 j)] for the variables, .S,?, ;‘j”, T(,‘&, j 0, I:2 ,.... .v 
and P,“, j 0: l,..., N -. 1. This system is reducible by substituting Eq. (13) into 
Eq. (I 1) to give 3N I- 2 equations. The problem now is to determine the roots of the 
equations 

--g(p) -}-- 

F” 1.0 

F’” 3.h’ 

1 

where 

XT : [(Yi”). 0 <,j S: IV, {7$,,], 0 < j $ ,V, {P,“], 0 < ,j 5; ;Y - lj. 

Using an earlier observation on Eq. (13), the system can be further reduced to 
2:V i. 1 nonlinear equations in the variables { r,“,,jj and ( PITtj. We use Newton’s scheme 
to solve these equations. 

.Vc+\.tonS Scheme ard the Computational Algorithm 

Applying Kewron’s method to the solution, Eq. (17) gives 

- 1( 
jhli) _ $2 (yp) 

Ax __ ,:“,-,-I) 

the Jacobian matrix, 

- Xhl), 

~71 = iteration index. 

(18) 
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Moreover, the Jacobian matrix J has the structure 

Clearly, the system of linear equations in Eq. (18) is reducible. Byjoining the boundary 
condition PNT1 -= 0 to the reduced set and reordering the variables and the equations, 
the reduced problem 

J’(?i2)Ax’ = -G’(m) (19) 

is of dimension 2(N + 1). The matrix J’ is block tridiagonal with 2 x 2 blocks. Let 

and 

Then 

uj = T,“j 

pj -3 pj?l. 

and 

Au, 
APO 
A% 

Ax’ = Au, 

AP, 
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where we have introduced 

83 

AN [ 
aA~-.1;2 -1 

0 1 1 ’ 

cj :-: O 
[ 

“1, 
-Kj+l/2 1 

j = 0, I , 2 ,..., N - 1, 

-hj_l/, 1 
Bj c-. 0 [ 013 j -= 1, 2 )..., N. 

Clear discussions of the numerical solution of the linear system in Eq. (19) are 
found in Keller [8] and Varah [9, lo]. Keller applied the standard block LU-decompo- 
sition algorithm [I I]. Varah extended the block-factorization technique further and 
compared its efficiency with the efficiency of band-solving methods when the matrix is 
treated as a band matrix. Other methods of solution also exist. 

Construction of a factorization method analogous to the method of invariant 
imbedding [12, 131 for solving linear two-point boundary-value problems is possible 
[ 141 because: 

.--- Equations (13), (14), and (16) comprise a nonlinear, two-point boundary-value 
problem that can be solved by quasi-linearization techniques using invariant imbedding 
to find the solution to the linearized problem. 

.- The proposed method of solution using Newton’s scheme is just the discrete analog 
of the factorization method, and it is reasonable to expect the discrete form of invariant 
imbedding to lead to a solution algorithm for Eq. (I 9). 

Moreover, the factorization method induced by invariant imbedding gives a 
direct identification of the physical variables. This together with the fact that invariant 
imbedding method is an initial-value technique make it most suitable for free-bound- 
ary problems [15, 161 and for developing a dynamic domain truncation algorithm to 
foIlow in a later section. 

The essential ingredient of the invariant-imbedding method is the Riccati trans- 
formation. Its discrete analog applicable to Eq. (19) is 

AUK z RiApi+Si, i = 0, 1 3 hi. , -,..‘; - (20) 
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Substituting Eq (20) into (I 9), we obtain a factorization algorithm, whose forward 
sweep is 

(21) 

and whose backward sweep is 

4P, = 0, 

[Ki-l/2Ri-l i- I] dp,.., =: [K~-~,~R~ - I] dp, + K~ .l,2(Sf - Si 1) - F$, 

i == N, N - l,..., 1. 

Equation (20) is then used to compute & , i = 0, I, 2 ,..., A’. 
When the block LU-decomposition algorithm [S] is applied to the solution of Eq. 

(19), the forward sweep is 

to = 1, do = to - K1.‘2% 3 
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and the backward sweep is 

Note that hi, i = 0, 1, 2 ,..., N may be computed alternatively as 

The relation between these two algorithms can be easily found. They are given by 

The discrete invariant-imbedding algorithm is more compact; it has a lesser storage 
requirement but, essentially, maintains the same operation counts. In general, by 
virtue of Eq. (22) and the results of Babushka [14], the invariant-imbedding algorithm is 
expected to be stable whenever the LU-decomposition algorithm is stable. 

Initial Estimates 

To initiate Newton’s scheme at t = t, , we use the previous values at t = t,-, . 
A first-order forward Euler formula predicts the initial estimate for Sin, called (Sfn)O. 
Because S,* > 0 for all i and I?, (Sin)” is set to zero if the computed value is negative. 
They are then substituted into Eq. (11) along with T” evaluated at t = tnA1 to yield 
the initial estimates of Tin, called (Tp)O. In turn, Eq. (15) is solved using (Tin)O and 
(.Sin)o. To avoid solving a nonlinear, two-point boundary-value problem, we evaluate 
the gaseous specific heat C and the heat-transfer coefficient 12 at t = t,.., and solve 
the resultant linear problem for (Tgyi)O. The discrete invariant-imbedding algorithm is 
applied toward its solution. 

Truncation of Computatiotzal Domain 

Physically, the retorting front propagates with a finite speed and spreads in time, 
exhibiting a wavelike structure. An efficient computational algorithm takes advantage 
of this in truncating the computational domain. Determining the criterion for truncat- 
ing the domain requires insights into the structure of the solution, particularly the 
solution ahead of the decomposition or retorting front. 

Because the rate expression in the decomposition reaction is of the Arrhenius 
type and the solution has wavelike behavior, we expect that, at a given time t, there 
is a point z = F(t) such that S(z, t) N S(z, 0) for z > Z. This is to say that the solid 
species S has not yet decomposed appreciably. From the gas-species conservation 
equation, it follows that the flow is fixed at G(?, t). Moreover, if the specific heat C, 
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the heat-transfer coefficient h, and the heat conductivity k, are weak functions of their 
respective temperature, the following approximate equations result: 

(23) 

for z > 2((t) and t > 0. The equations are linear. Using the wave-front analysis of 
Whitham, [17] we find that the wave-front propagates with a speed 

CG 
us = - 

PSCS~ ’ 

and, in the neighborhood of the wave-front, the solution is governed by 

where 5 = t - z/us . We may solve Eq. (24) to set up a truncation criterion. The 
solution of Eq. (24) having the desirable property is given by 

T!7(& 0 = g I-:, exp(-(@2 + &,k3) t + ikt) -$- 

= To{4 - Ai,,,[cY0t1’3p~2’3, -S(p&1’3J>, (25) 

where 

Lx0 = ( CG 3hk 1 3ha -l -++- 
VS CspsriJ us2 -G- ’ I( ) 

PO = k, (us2 $)-I, 

A. s-3.2 = the generalized Airy function. 

The relation in Eq. (25) is valid away from z = L. A possible criterion may be to 
truncate the computational domain when 

or to find .$ such that 

% (5, t) = 1 + E 

4 + E = Ai,,,[ol,t1’3,&z’3, -&t)-1’3]. 
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Unfortunately, to apply this criterion we need to compute thegeneralized Airy function 
of indices 3, 2 or to have a table of this function [18]. Neither of these techniques is 
acceptable computationally. The former requires additional computation time, while 
the latter puts demands on storage. It would be desirable to do the truncation estima- 
tion within the computational algorithm. 

In view of this discussion, it is clear that the truncation of domain must occur for 
Sin -Sin in that portion of the domain where no appreciable decomposition takes 
place. Let this be called DCS, i.e., fiCs = {x, t S(x, t) = S(x, 0) : es} with cS > 0. 
During the calculation of the initial estimates for Sin - (Sin)(it we can determine 
Qs 9 which approximates dCs , i.e., 

B& -= {i, n I (CT,")' = Sin + es). 

The next step is to derive a meaningful criterion to determine the cutoff. 
During the third stage of the prediction cycle, we use the discrete invariant- 

imbedding algorithm to solve a two-point boundary-value problem for 
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The solutions of Eqs. (27) and (28), with their associated initial conditions, are given by 

and 

Pi = di, 1 -1. di+,C,+., + O<i<N, (30) 

where 

a, = ( K;,~,,~ i- CGi+l:, - 

Equation (30) suggests the following dynamic truncation algorithm: 

(I) Solve Eqs. (26) and (27) for i = I, 2,..., N, , where NC is determined by 

I s,vc - G-1 I < cc and IV&,* . 

(2) Continue solving Eqs. (26) and (27) to i = N, -I- IT,. 

(3) Find the initial condition for the backward recursion of Eq. (28) with 

(4) Terminate the subsequent iterative solution at i = NC with LIP:= = 0. 
(Clearly, because of the traveling wavelike behavior of the solution, Nc changes 
with n.) 

An a priori error estimate can be obtained connecting the error E~ with the trun- 
cating error associated with Eq. (31). To derive the error estimate, the thermodynamic 
and transport coefficients must be weak functions of the temperature. However, the 
derivation is lengthy and will not be presented here, although it shows that Eq. (31) 
gives a reasonable approximation. In general, computational experiences in the next 
section indicate that the proposed domain-truncation algorithm works. 
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Numerical Examples 

For convenience in computing the example problems, we assume constant gas 
specific heat, constant heat-transfer coefficient, constant effective axial heat conduc- 
tivity, and a specific heat for the solid that is a linear function of the solid temperature. 
The values of the constants are: 

G, :z 0.01 kg/m” set, 

h = 8 Jjm” Ksec, 

C = 1000 J/kg K, 

p,, ::= 1916 kg/m3, 

C, = 827.4 -; 0.922 (T - 29s.) J:‘kg K, 

k(T) = 2.81 x 10’” exp{-26389/T) set-‘, 

k, = 0.25 J/mKsec, 

fi = 0.15, 

h, : 3.7 x lo” J,‘kg, 

r, = 0.01 m, 

01 = 0.57, 

S,,(z) =-: 314 kg/m”. 

A series of problems is solved to assess the effectiveness of the domain truncation 
algorithm, particularly with the influences of Ed and flC . The results illustrating the 
effect of Ed with NC fixed at 10 are summarized in Table I. The effects of varying fiC 
when es is fixed are shown in Table II. From Tables I and II, we see that the value 
of the temperature gradient P at the domain-truncation point is a function of E.~ , 
provided fiC is large enough that the asymptotic value is reached. For the example 
problems, Iv, -= 10 gives three-place accuracy to the asymptotic value. 

TABLE 1 

Results of the Domain Truncation Algorithm Showing the Effect of ES When NC Is Fixed at 10 ant! 
L = 1.5, NZ -- 150, At -.- 300, and t -= 6OCQ 

6.s NC NC P(56) P(64) P(72) P(79) 
_--__ _-- -. 

IO.3 10 56 -7.187 x 10 -4 
IO-’ IO 64 --.7.389 x 10 4 -7.165 x 10 5 
IO-6 10 72 -7.373 x lo-" -7.456 x 1O-5 -6.710 x IO--” 
10 6 10 79 -7.371 x IO-' - -7.438 Y  \ lo-” -7.104 x 10-C -8.268 :: 10 -: 
No domain truncation -7.370 x lo-’ - 7.435 x 10 3 ---7.073 x 10-G --8.672 x IO-' 
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TABLE II 

Results of the Domain Truncation Algorithm When &‘c Is Varied, ES Is Fixed, 
andL 1 lS,NZ-- 15O,A/ = 300,andt: 6000 

NC ES 
-.. ~ - .~ -... -.. 

2 IO-" 
4 , o--.4 

6 IO-’ 
8 1 o-” 

IO 10 -,I 
No domain truncation 

Iv, PW) 

- .~-. 

64 -6.064 x lo-” 
64 -6.996 x IF 
64 --7.139 x 10-j 
64 - 7.161 x IO-” 
64 - 7.165 x 10-j 

-7.435 x 10-j 

Heuristically, this result is expected from Eq. (31) if / Ci 1 < 1 and : d,+l j = 

O(l a, I), i > NC. Tndeed, for the case in Table II, 

The effects of changing the spatial and time-step sizes on the domain truncation with 
a fixed cS = lo-” and hrc = 10 are illustrated in Table III. 

TABLE III 

Elects of Changes in the Spatial and Time-Step Sizes on the Domain Trunction 
Algorithm When fit 2-7 10, l s = lo-‘, and 1 -- 6000 

--- 
hrZ 

150 
150 
300 
300 

AI NC P Gc 
-._~ _~--- 

300 64 -7.538 x 10 5 - o.cti37 
600 64 5.951 x IO 5 -0.6037 
300 123 I.671 x 10 4 --0.3376 
600 122 -1.515 x 10-A - 0.337s 

To demonstrate the solution behavior of the model equations, a number of calcula- 
tions are made. Figures 1 through 3 give the gas-temperature profiles, solid-tempera- 
ture distribution, and the solid-species profile at t = $, &, and 1 day, respectively. 
To show the difference in scales inherent in the chemico-physical processes, we plot 
the gas-temperature profile, solid-temperature distribution, and the solid-species 
profile at t = 1 day in Fig. 4. The domain-truncation point is located at i -1 274 or 
z = 1.37 m. WC see from the figures that the solid decomposes within a narrow 
temperature range 600 to 725 K. Because of the endothermic nature of the decomposi- 
tion process, the temperature profiles, gas and solid, become smoother in that tempera- 
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0 0.5 1.0 1.5 

Distance - m  

FIG. 1. Gas-temperature profiles t = $, 4, and 1 day. 

0 0.5 1 .o 

Distance - m  

i 
J 
1. 5 

FIG. 2. Solid-temperature distribution t = 4, +* and 1 day. 
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Distance - m 

FIG. 3. Solid-species profile at t = $,&, and 1 day. 

Distance ~ m 

FIG. 4. Gas-temperature profile, solid-temperature distribution, and solid-species profile at 
t = 1 day. 

ture range. On the other hand, if the chemical process is exothermic, the temperature 
variation would steepen from the added chemical energy. In turn, the local species 
variation will undergo a more drastic change. This case will be a severe test for any 
numerical scheme, including the present one. 
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We have developed a numerical scheme for modeiing specific retorting processes 
in a rubblized bed of oil shale with a chemically reacting porous medium flow. (2 
nonlinear discretization of the species rate equation is central to the dcveiopment of 
the numerical method in recognition of the rapid variation inductd by the temperature- 
dependent decomposition rate. This circumvented the stiNness inherent in the equa- 
tions with a scheme that uses a fixed step size commensurate with the smooth tcmpera- 
ture variation yet also accurately evaluates the rapidly varying species profile. 

The numerical method also uses a discrete analog of the invariant-imbedding 
algorithm for second-order, two-point boundary-value problems to solve the linear 
system induced by Newton’s method. The discrete invariant-imbedding aigorithm 
is further exploited to develop a dynamic domain truncation scheme to increase 
eficiency. 

We have also demonstrated the efficiency of the proposed numerical method by a 
series of computations that show the scheme is accurate and eficient. 
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